Features

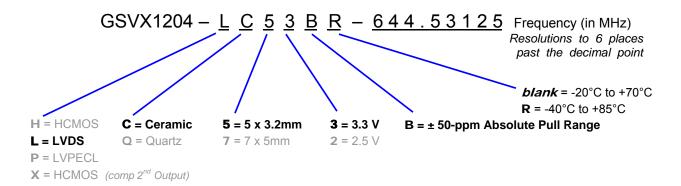
EXTREMELY Low Jitter
Low Cost
EXPRESS Delivery
Frequency Resolution to six decimal places
Absolute Pull Range (APR) of ±50ppm
-20 to +70°C or -40 to +85°C operating temperatures
Tri-State Enable / Disable Feature
Industry Standard Package, Footprint & Pin-Out
Fully RoHS compliant
Gold over Nickel Termination Finish
Serial ID with Comprehensive Traceability

Picture of Part

Description

The GSVX1204 Crystal Oscillator is a breakthrough in configurable Frequency Control Solutions. It utilizes a family of proprietary ASICs, designed and developed, with a key focus on noise reduction technologies.

The 3rd order Delta Sigma Modulator reduces noise to the levels that are comparable to traditional Bulk Quartz and SAW oscillators. The ASICs family has ability to select the output type, input voltages, and temperature performance features.


With the express lead-time, low cost, low noise, wide frequency range, excellent ambient performance, it is an excellent choice over the conventional technologies.

Finished parts are 100% final tested.

Applications

ANY application requiring an oscillator SONET
Ethernet
Storage Area Network
Broadband Access
Microprocessors / DSP / FPGA
Industrial Controllers
Test and Measurement Equipment
Fiber Channel

Model Selection Guide

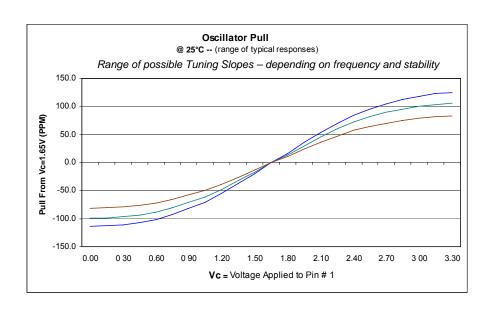
Absolute Maximum Ratings (Useful life may be impaired. For user guidelines only, not tested)

Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Input Voltage	V_{DD}		-0.5V to +5.0V
Operating Temperature	T _{AMAX}		–55°C to +105°C
Storage Temperature	T _{STG}		–55°C to +125°C
Junction Temperature			150°C
ESD Sensitivity	HBM	Human Body Model	1 kV

Electrical Characteristics

Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Frequency Range	Fo		0.750 MHz to 1.35 GHz
Absolute Pull Range Note 1	APR		± 50 ppm MIN
Temperature Range	T _O	Standard operating Optional operating Storage	-20°C to +70°C -40°C to +85°C -55°C to +125°C
Supply Voltage	V_{DD}	Standard	3.3 V ± 5%
Input Current (@ 100 Ohm LOAD)	I _{DD}	Full Load	100 mA
Output Load		Standard	100 Ohms Typ.
Start-Up Time	Ts		10 mS
Output Enable / Disable Time			100 nS
Moisture Sensitivity Level	MSL	JEDEC J-STD-20	1
Termination Finish			Au

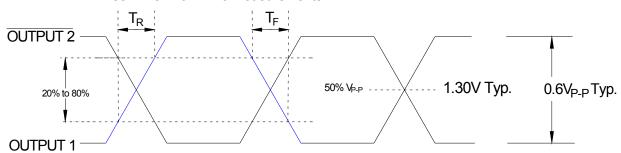
Note 1 - Inclusive of 25°C tolerance, operating temperature range, input voltage change, load change, aging, shock and vibration.


Frequency Control (Vc) Input -- pin #1

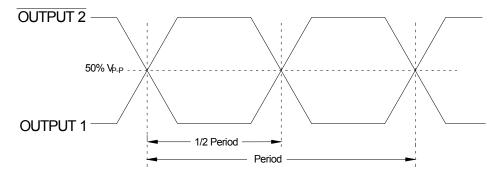
Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Control Voltage Tuning Slope ¹		0V to V _{DD}	40 ~ 75 ppm/V Typ ²
Control Voltage Linearity ²	L _{VC}		± 10%
Control Voltage Tuning Range	V _C		0V ~ 3.3V
Modulation Bandwidth	BW		10 kHz Min
Nominal Control Voltage	V _{CNOM}	@ f ₀	1.65V

NOTES:

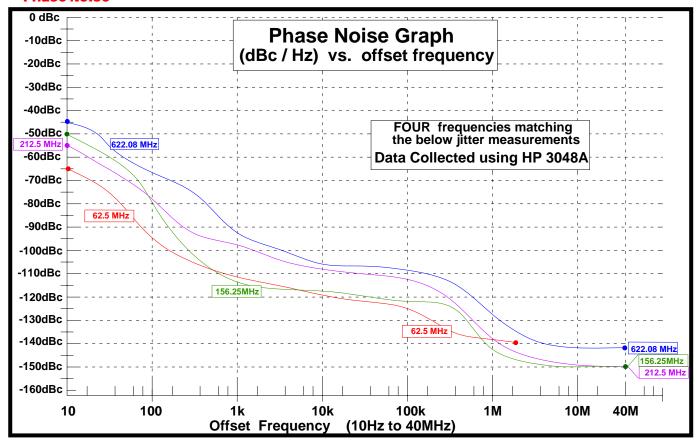
¹ Actual slope is affected by frequency and accuracy settings.


For an example of linearity, see the graph below. (The middle line represents the default factory setting)

Output Wave Characteristics


Parameters	Symbol	Condition	Maximum Value (unless otherwise noted)
Differential Output Voltage	V _{OD}	0.75 MHz to 1.35 GHz	0.6V Typ.
Output Offset Voltage	Vos		1.3V Typ.
Output Symmetry (See Drawing Below)		@ 50% V _{P-P} Level	45% ~ 55%
Output Enable (PIN # 2) Voltage	V _H		> 70% V _{DD}
Output Disable (PIN # 2) Voltage	V_{IL}		< 30% V _{DD}
Cycle Rise Time (See Drawing Below)	T _R	20%~80%	400 pS
Cycle Fall Time (See Drawing Below)	T _F	80%~20%	400 pS

Rise Time / Fall Time Measurements



Oscillator Symmetry

Ideally, Symmetry should be 50/50 for 1/2 period -- Other expressions are 45/55 or 55/45

Phase Noise

Jitter is frequency dependent. Below are typical values at select frequencies.

LVDS Phase Jitter & Time Interval Error (TIE)

Frequency	Phase Jitter (12kHz to 20MHz)	TIE (Sigma of Jitter Distribution)	Units
62.5 MHz	0.77	3.0	pS RMS
156.25 MHz	1.19	3.6	pS RMS
212.5 MHz	0.89	3.9	pS RMS
622.08MHz	0.99	3.2	pS RMS

Phase Jitter is integrated from HP3048 Phase Noise Measurement System; measured directly into 50 ohm input; V_{DD} = 3.3V.

TIE was measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software; V_{DD} = 3.3V.

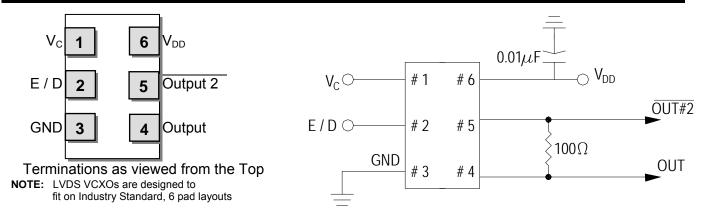
Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)

LVDS Random & Deterministic Jitter Composition

Frequency	Random (Rj)	Deterministic (Dj)	Total Jitter (Tj) (14 x Rj) + Dj
62.5 MHz	1.3	7.0	24.9 pS
156.25 MHz	1.3	5.8	23.6 pS
212.5 MHz	0.9	6.7	18.7 pS
622.08 MHz	1.1	5.3	20.7 pS

Rj and Dj, measured on LeCroy LC684 Digital Storage Scope, directly into 50 ohm input, with Amherst M1 software.

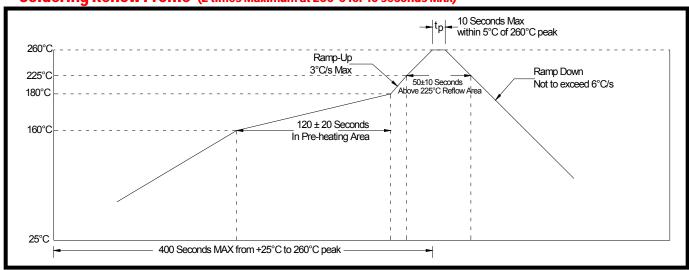
Per MJSQ spec (Methodologies for Jitter and Signal Quality specifications)

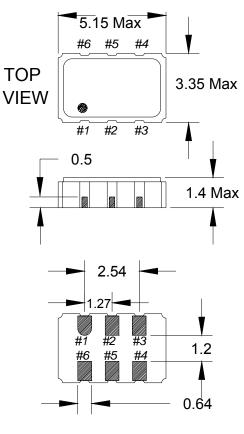

Pin Description and Recommended Circuit

Pin#	Name	Туре	Function
1	V_{C}	Control	Frequency Control by changing voltage
2	E/D ¹	Logic	Enable / Disable Control of Output (0 = Disabled)
3	GND	Ground	Electrical Ground for V _{DD}
4	Output	Output	LVDS Oscillator Output
5	Output 2	Output	Complimentary LVDS Output
6	V_{DD}^{2}	Power	Power Supply Source Voltage

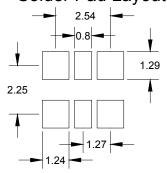
NOTES:

 1 Includes pull-up resistor to V_{DD} to provide output when the pin (2)is No Connect. 2 Installation should include a $0.01\mu F$ bypass capacitor placed between V_{DD}


(Pin 6)and GND (Pin 3) to minimize power supply line noise.


Enable / Disable Control

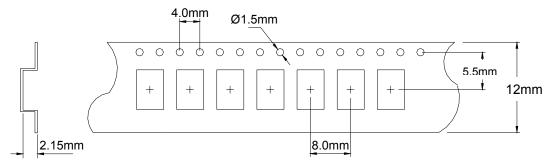
	Pin # 2 (state)	Output (Pin # 4, Pin # 5)
	OPEN (No Connection)	ACTIVE Output
"1	" Level V _{IH} > 70% V _{DD}	ACTIVE Output
"C	" Level V_{IL} < 30% V_{DD}	High Impedance


Soldering Reflow Profile (2 times Maximum at 260°C for 10 seconds MAX)

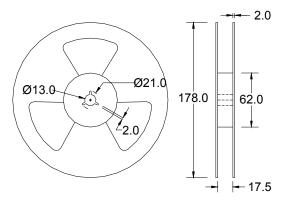
Mechanical Dimensional Drawing & Pad Layout

Recommended Solder Pad Layout

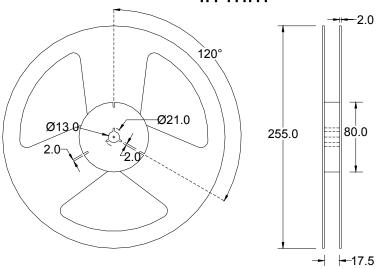
Note: LVDS VCXOs are designed to fit on Industry standard, 6 pad, layouts.


Pin Connections

- #1) V_c #4) Output
- #2) E/D #5) Output 2
- #3) GND #6) V_{DD}

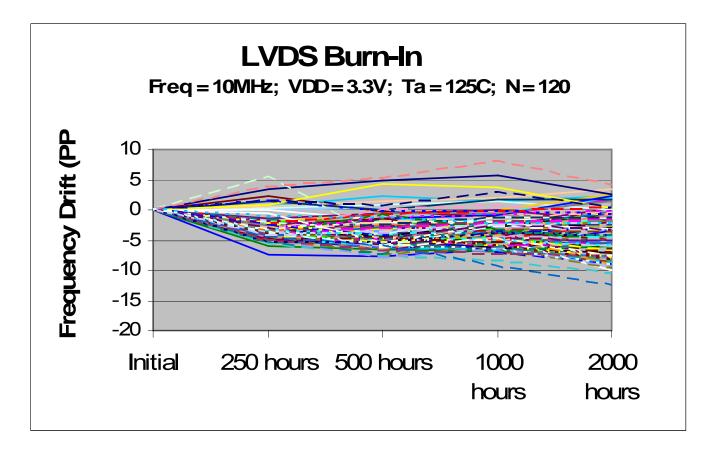

Drawing is for reference to critical specifications defined by size measurements.

Certain non-critical visual attributes, such as side castellations, reference pin shape, etc. may vary


Tape and Reel Dimensions

1k Reel Dimensions in mm

2k Reel Dimensions in mm



Mechanical Testing

Parameter	Test Method
Mechanical Shock	Drop from 75cm to hardwood surface – 3 times
Mechanical Vibration	10~55Hz, 1.5mm amplitude, 1 Minute Sweep 2 Hours each in 3 Directions (X, Y, Z)
High Temperature Burn-in	Under Power @ 125°C for 2000 Hours (results below)
Hermetic Seal	He pressure: 4 ±1 kgf / cm ² 2 Hour soak

2,000 Hour Burn-In

Burn-In Testing – under power 2000 Hours, 125°C

